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Eq. (1.4) with the boundary conditions 

” Ii :--v (0, I) = E f (S.‘j.l, II I . = g, (q-). I-_0 II (,r, I#) --- 1.; (.I) (3.3) ,>..h’ 

Here f, > 0, gz > 0; ,f, (J, 4:) - 0, g, ($) - 11~ (11) for I-‘-+(). In addition, i,. gc are 
smooth functionsand the consistency condition is satisfied at the point (0, 0). In the same 
way we obtain a positive solution Q, (z, I$) of the problem (1.5), (1.6) in G,, for some n 
as the limit of solutions ut,’ (2, I$) of the problem (1.5). (3.3) as e -+ 9. 

The function s = ut,’ - lcpE satisfies the linear equation 

Since s =m= 0 on the boundary of the domain G,,, dp / dx 2 0, LcT,e > 0, llpE > 0, and 
the second derivatives of the functions ubE and llpE are bounded with respect to $ , it then 

follows from the maximum principle that zip : r/i,” in G,. By a limiting transition we 

obtain the inequality flp (IC, 11) \ Q (z, $1 in G,, From this it follows that when dp / 

0~ > 0 boundary layer separation takes place in bil for ~1 == r? if separation takes place 
in D, for (L = z,, when dp / dz EZ 0. This completes the proof of the theorem. 

Corollary. If dp / dx > 0 and z‘~ (x) = m = coast > 0, boundary layer sepa- 

ration takes place in Do for some (I. 

In conclusion, the author thanks 0. A. Oleinik for interest in this paper. 
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We consider the system of thermal boundary layer equations for a two-dimen- 
sional steady forced-convective flow of an incompressible fluid. Our principal 
object of study being the equation for the temperature. We prove the single- 
valued solvability of the fundamental boundary-value problem for this equation. 

The problem of the single-valued solvability of the fundamental problems of 
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dynamic boundary layer theory for the steady flow of an incompressible fluid 
was studied in [l - 51. The temperature equation was studied in [6] in connec- 
tion with the case involving solution of the dynamic system of equations relative 
to the problem of extending the boundary layer [I - 53. 

1, Consider the system of equations of the thermal boundary layer for the forced- 
convective flow of an incompressible fluid (see u]) 

Yllyy - llU1: -- fUy = - uu,, U1. + Dy = 0 
(1.1) 

aTuv - uT,~ --. VT, = f (z, y) = -- v/c (I$/)‘2 
U.2) 

Here v, n and r are known positive constants and pi (x) is the specified longitudinal 
velocity component of the outer flow. Initially we determine the functions u (x, yj and 
2’ (z:, u) from the dynamic equations (1.1) and the boundary conditions corresponding to 
them : we then use the result to determine the temperature T (x, ~1) in the boundary 

layer from Eqs, (1.2) and the associated boundary conditions, which we give below. 
let u (z, ?/j and v (CC, 21) be the solution in the domain Q (0 < I < X, 0 < ?/ < mf 

of Eqs. (1.1) with the following boundary conditions : 

Here vTo (z) and U (z) are specified smooth functions, U (0) = 0, U (2) > 0 for z > 0 

and u’ (0) > 0. 
Uniqueness and existence theorems were established for the solution of the problem 

(1, l), (1.3) in [3, 41. We shall not give these theorems here but merely note those pro- 
perties of the functions u and v which are used to study Eq, (1.2) in the strip Q; for 
brevity we call them the Conditions A : in any arbitrary compactum lying in the strip 

Q the functions u fs, ~1, 1‘ fz, .y) and iiV (z, y) satisfy Holder condition; it (2, ;y) > LI 
for 2, y > U; 11 (I, 0) = 0, u (0, ?/Y) = 0; u. ix9 ?fj < U (-zj everywhere in Q, where the 
function U (zj is continuous for z A 0 and x 

(1.4) 

0 

the function ?J (2, yj. is bounded for bounded Y, and uy (T, ~1) + 0 for ?I --+ :a. It is 
evident that Eq, (1.2) in the domain Q is a parabolic equation which is degenrate for 
2 = (J and ~1 = u. 

Before formulating a properly-posed boundary-value problem in Q for Eq. (1. Z), we 
make the following notes. 

Note 1. It is known (see, for example, [S, 91) that owing to the conditions (1.3) 
and (X.4) no boundary condition can be specified for T (x, 9) at x = 0 . We show that 
a bounded solution of an equation of the form (1.2) with the boundary condition 

T lJ,=o = To (2) (1.5) 

where To (xj is a specified continuo~ function on 0 < 5 < X , may prove to be non- 
unique. In fact, the function 

T(ii)& {+t+t 
0 

which is bounded and nonzero in the strip Q , satisfies Eq. (1.2) for a =$ , u = &? n -2 cr,y, 

f = 0 (k >, 2 7 a - const < 0) and also the homogeneous boundary condition T lllzo= 0. It 
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follows from this that for the conditions considered the solution of the problem (1.2)) 
(1.5) is not unique. Thus, in addition to the condition (1.5), yet another condition must 

be given. In boundary layer theory a condition which serves the puropse is lim T cr, y)= 

T where T, is a specified constant. l,-X 
m, 

Theorem . Suppose that the coefficients and the right side of Eq. (1.2) satisfy the 
Conditions A and, in addition, that 

g..,{~?,)&}ii<~. p (~1) = mas 1‘ (.r, ~1) (1.6) 

0 
o-,.\< s 

I f CT3 ?I) I e g (?/I 0. v 

where the positive function g (y) - 0 for v - 00 in such a way that 

+= 

1 c (I) es11 (- 3 p (S) dS) dr < iQ (1.8) 
0 0 

Then in Q Eq. (1.2) has a unique bounded solution satisfying the conditions 

T Jr,_+, == T, (s), lim T (x, ~1) = T, 
r,-‘z (1.9) 

where T, (2,) is a specified continuous function (temperature of the wall of the body 

over which the flow takes place), T,,’ (r) is bounded, and T, is a specified constant 

(temperature of the outer flow). 

2. For proving the theorem we find it convenient to make a change in the indepen- 
dent variables, namely, 1 *‘ ~-7 r, rl’l- ttr/ (2.1) 

for which the strip Q goes over into the rectangle D (0 < z < X, 0 < q < I), and 
Eq. (1.2), wherein with no loss in generality, we can assume n = 1 and replace it by the 

following equation in the domain D: 

I, (T) -_ (1 - q)4 T,, - u (~7 11) T, + b (~3 rl) T,: = f (~7 ‘I) (2.2) 

b (.r, 1)) = - (1 - q)” [Z (1 -q) + t‘ (T, q)] 

The conditions (1.9) become the boundary conditions 

T I,,::” = T, (~1, T Ir-, = T, (2.3) 

We prove the existence of a solution of the problem (2.2), (2.3). For this purpose we 

consider Eq. (2.2) in the rectangle 

D, (6 < x 4 X, 6 < ‘1 < 1 - 61, 0 < 8 < ‘/.I 

with the following conditions on the boundary of Ds: 

T lnzs = Tw (z), T In+-6 = T,, T Ix==rj = T,’ (rl) (2.4) 

where the function T,’ (q) is chosen to satisfy the conditions 

TIb (a) f T, (a) for 11 < IIs. 6” (11) = T, for 9 ;.‘. :,I1 

I T,” (rl) I < max 1 I T I 7 
a- 

,:“x”(“s I Tw (4 I j - M 
-_-. 
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A solution T” (2, TJ) of the problem (2.2). (2.4) exists, and by the maximum principle 
for nondegenerate parabolic equations (see, for example, [IO]) 

I T” (2, q) I < M (2.5) 
where M does not depend on 6. By virtue of Schauder-type estimates [lo], there exist 
in an arbitrary fixed rectangle D, , estimates for the Hblder norms of the solution T’ 

and its derivatives T:,, T&, Tz which are uniform with respect to 6 . 
Based on these estimates, we use the diagonal process to select a subsequence T’, 

(m = 1, 2, 3, . . .) which, together with the derivatives appearing in Eq, (2.2), converges 
for 111 + L0z (S, 4 0 for 111 - 0~) in every closed domain lying strictly inside D. Let- 

ting ITL - 00 in the equation for T&m, we find that the limit function T (2, q) satisfies 
Eq. (2: 2) in the rectangle D. 

To prove that the con$tion T (r, 0) = T, (LX) is satisfied we estimate the difference 

7’ (2, 11) - i”, (1.) := S” (.v, 7) for small q. The equation 

which is satisfied by the function Ss (z, q), is now considered in the domain D,’ ( B < 

.c < X, 6 < q < I/%}. Let 1 j (I, rl) 1 < 1M,, and u (z, 11) 1 T,’ (x) I < M, in the domain 
lib’. We introduce the auxiliary function y (rl) = K (1 - eeRn).We choose the constant 

fi > 1) from the condition iv (1 - q)” > 1 b (x, q) 1 + 1. This is possible since the coef- 
ficient L (7, y) is bounded for bounded yt or, in accord with the substitution (2.1). for 

11 < q,, < 1. We choose the constant h’ > 0 so that 

(2.6) 

where dl is the quantity appearing in the inequality (2.5). Computing L (Y), by virtue 
of the choice of N , we have 

L (y) = _ KK,>--“, (N (1 - + - b (z, q)) < - k.iVe-” < 0 

Consider the function Y +- Sb (z, 11). By virtue of inequality (2.6), we have in D,’ 

I. (k- k ~7’) < - 6Se-’ 5 j (2, q) t_ u (2, q) T,’ (1.) a: - I’I’LVC-~’ -+ M, + hf, < 0 

Fmm the relations (2.4) - (2.6) it follows that the function Y _t S5 > 0 on the bound- 
ary of the domain 06’ lying on the lines z = 0, q = 6, “‘1 = I/,. From this it follows 
by the maximum principle that 1-k S” > 0 everywhere in D,‘.Hence we have the esti- 
mate ) S” (I, q) I < 1. (11) which is uniform with respect to b and 5. Then, letting 
6 - 0 and 11 - 0, we obtain T (2, 0) = 1’,, fz). 

We now prove that T (z, 17) also satisfies the second of the conditions (2.3). To do 
this, we estimate b 6 (.z, 11) = I s (s. 1;) - I‘,, for small 1 - ‘1. We consider the equation 
L (I;“) = j (2, q),which the function J” ( z, 11) satisfies, in the domain Dj” (8 < z < X, 
21, < 9 < I - 8;. Consider the function 

2 (q) = K, i c (t) c, (1) dl (2.7) 
n 

where I 1 
G (t) := _.-L- (1 _ i)” exp 

0 0 
the functions /3 (z) and g (t) being the same as in the statement of the theorem. The 
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integral (2.7) exists by virtue of the inequalities (1.6) and (1.8) and defines a positive 
function for r) < 4. We choose the constant K, > 1 from the condition Z (Vs) > 25: 
where M is the constant of inequality (2.5). We have 

L (z) = - K,G, (11) [(I - r1j4 G’ (11) + b (2, 11) C(q)1 - h-1 g (q) (2.8) 

from the definition of the function 0 (q), we obtain from Eq, (2.8) 

L (Z) < - K1 g (11) 

It is easy to see that_ the function z (TQ Ir F” (z, q) > 0 on the boundary of D,” lying 

on the lines z = 6, 77 = ‘lj, q = 1 _ 8. By virtue of the choice of k’, > I , inside I?,” 

we have L (2 +- F”) < - K, g (II) + f 6, q) < - K,g (q) + g (9) < 0 . From this 
we find by the maximum principle that 7; 5 F” > 0 everywhere in the domain D,“, 
or, 1 8” (T, q) 1 < Z (11) in this domain. Letting 8 -+ 0 in the last inequality, we obtain 
that T (r, 11) - T, for q -) 1 , uniformly with respect to z, QED. 

It is obvious that if f I_ 0 in Eq. (1.2) (which is the situation when heat generated by 
friction is neglected), the condition (1.7) is eliminated and for the function 2 (t1) we 
can take 1 II 

Ki G(t) dt 
I 
II 

We proceed now to prove the uniqueness of the solution of the problem (2.2). (2.3). 
Suppose that two solutions of the problem exist and consider their difference 

T (21, q) = T, (1, rl) - T, (2, rt) 

For an arbitrary e > 0 we can find a 8 (e) such that for q = 1 - 6 (a) we have 
I T (x, q) ) < e. The function v == T (z, q) - E satisfies the equation L (V) = 0, more- 
over, I? < 0 for q = 0 and q = 1 - ii (P). We show that I/ < 0 everywhere in the rec- 

tangle Z.1, {0 < z < X, 0 < r) d 1 - fi (F)). In the equation T. (I’) = 0 we make the 
substitution 

then for the function R (z;, q) in n, we obtain the equation 

L (R) z (1 - ?I)4 R,, - UN, + BR, _1- CR = 0 (2.9) 

We SeleCt the function H (q) > 0 so that in Eq. (2.9) we shall have c (J, q) < P,, = 
co*st < 0. Consider the function 

X 
I) 

(D(x)-_ - s at 
u (‘) 

.x 

where U (t) is the function that appears in relation (1.4). We have 

fl (z, ri) 
JL (cp) = c (I, q) @ (2) -i- c < cg @ (z) + 1. 

Since c0 < 0 and 0 (z)-4 = for c - 0, we can find an 2,) such that for all x < xi1 we 

have 1, t@) < 0. Then for arbitrary y > 0 we obtain 
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L (Y@ (4 - R (I, rl)) f 0, for r < x0 

For fixed Y we can find z1 (y) > 0 such that y@ (zJ - R (To, q) > 0 for 0 < q < 1 - 
6 (F). In addition we also have V-D (z) - R (x, 1) 2 u for 9 = 0 and for q = 1 - 6 (a) 
since R (2, 0) < 0 and H (z, 1 - 6 (e)) < 0. Hence, it follows from the maximum prin- 

ciple that @ (z) - R (z, q) > 0 everywhere in rectangle {x1 < I < x0, 0 < 11 < i - 

6 (a)}. Since Y is arbitrary, it follows from the inequality R (CC, q) < y@ (CL) just proved, 
that R < 0 in the rectangle (0 < z < x0, 0 < q < 1 - c (6)). But then by the maxi- 
mum principle this is also true in the rectangle {x0 f 1: < X, 0 < r~ < 1 - 6 (a)), 
since there L (R) = 0 also and 

R I x=x9 GO, R / v=o<O~ R I ,,=I, I G o 

Thus we have proved that R $ 0 everywhere in D,. From this it then follows that 
Z’(r) q) < E in D,. By virtue of the symmetry of T, and T, we have 1 T (z, q) ( ( e 
in D,. Letting F - 0 , we obtain 1’, - II’,. This completes the proof of the theorem. 

N o t e 2. We have shown above that the solution of the problem (1.1). (1.3), constructed 
in [3, 41, satisfies the Conditions A of the theorem. However, in the theorem, besides 
the Conditions A, we need also to satisfy the conditions (l-6), (1.7). Proceeding from 

the results presented in [3], we can show that the solution u (z, y: and 1’ (z, y) of the 
problem (1.1). (1.3) also satisfies the conditions (1.6) and (1.7). 

Note 3. In the formulation of the problem (1.2). (1.9) we assumed that TX= const. 

We show now that we cannot specify a nonconstant value at infinity for the solution 
T (z, y) of Eq. (1.2) which is bounded in the strip Q . 

Let us assume that the solution T (z, y) of the problem is such that liml,-o T (cr.,u) = 

?‘= (2). By Eqs. (2.1) this is equivalent to the condition T (z, q)$=r = T, (z). For an 

arbitrary E > 0 we can find a 6 (e) such that 1 T (2, 1 - 6) - T, (%) 1 < F. Let us set 

T” (5, 11) - T, (6) = FS (z, q). Equation (2.2). which the function FS (2, 11) satisfies, 
is now considered in the domain D,” {S < 2 < X, 2/3 < q < 1 - 6 (&)I. Further, con- 
sidering the function 2 (q) + e k FS (2, TJ), where Z (11) is defined by Eq, (2.7). and 
repeating word for word all the steps followed in proving that the second of the conditions 

(1.9) is satisfied, we obtain the following estimate in the domain ES” : 

uniformly in F, and x. From this, letting 6 - 0 and noting that 2 (11) - 0 for 11 - 1, 
we have 1 T (cc, 1), - T, (0) 1 < E. Since E is arbitrary, we obtain T (r, 1) z T, (0), 

i.e. T, (2) E T, (0) = const, QED. 

3. For the study of the system (1.1). (1.2) we can use the Crocco transformation: 

E = 2, q = u (z, y)/ L; (x). Then the domain Q goes over into a domain D. and instead 
of the dynamic system of Eqs. (1. l), we obtain in D the following equation for IV = 

The conditions (1.3) transform into the following conditions for W: 

JV I ,;=I = 0, (VU’R’, - 2‘0 (9 w + UC) I +,=. = 0 (3.2) 

The Crocco transformation changes the temperature equation (1.2) into an equation 
of the form 
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Equation (3.3) possesses the same singularities in the domain n as does Eq, (1.2) in the 

domain Q; it degenerates for n = 1. 11 = 0 and c x- 0, i.e. on the whole fundamen- 
tal boundary of the domain 13. 

Existence and uniqueness theorems for the solution w of the problem (3.1). (3.2) 
were proved in [ 31. A study of Eq. (3.3) on the basis of the properties of the solution 

l+’ of the problem (3.1). (3.2) leads to the same results as those above by virtue of the 

invertibility (proved in [3]) of the Crocco transforamation. 
We note, in conclusion, that if the integral (1.6), in which 

B (~1) = min (3 (z, ?I) 
a X&:-s 

diverges, and the coefficients and the right side of Eq. (1.2) satisfy the Conditions 
before, then the Eq, (1.2) has a unique bounded solution in Q , satisfying only the 

dition (1.5). 
The author thanks 0. A. Oleinik for a discussion of the results. 

k as 
con- 
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