152 A.I.Suslov

Eq, (1,4) with the boundary conditions
Wymevio = Te e )y wlg= g0, w(x, ) —— L) (3.3)

Here f. >0, g.>0; f. (@, ) — 0, g (§) — ux (§) for e—0. In addition, f_, g are
smooth functionsand the consistency condition is satisfied at the point (0, 0), In the same
way we obtain a positive solution uy, (x, ¢) of the problem (1. 5),(1.6) in G, for some a
as the limit of solutions u;° (2, ) of the problem (1.5),(3.3) as g — 0.

The function s = u,® — up° satisfies the linear equation

(_l -2 (0.___“1)5 -+ (L‘ps) ﬁ = (u,® + ups) 1?;’5_ — <02”"E - Py ) s _I__d_p
s \ a‘P op /oy b e iy oy u[.e dx

Since s = O on the boundary of the domain ¢,, dp/ dz > 0, w,* > 0, up® >0, and
the second derivatives of the functions wu;,* and up® are bounded with respect to v , it then
follows from the maximum principle that up® < w* in ¢,. By a limiting transition we
obtain the inequality wup (2, ) <. up (z, $) in G, From this it follows that when dp/
ax > 0 boundary layer separation takes place in D, for « = 7, if separation takes place
in Dy for « = x,, when dp/ dx = 0. This completes the proof of the theorem,
Corollary, If dp/dx >0 and #, (2) = m = const > 0, boundary layer sepa-
ration takes place in D, for some a.,
In conclusion, the author thanks O, A, Oleinik for interest in this paper,
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We consider the system of thermal boundary layer equations for a two~dimen-
sional steady forced-convective flow of an incompressible fluid, Our principal
object of study being the equation for the temperature, We prove the single -
valued solvability of the fundamental boundary-value problem for this equation,
The problem of the single~valued solvability of the fundamental problems of
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dynamic boundary layer theory for the steady flow of an incompressible fluid
was studied in [1 ~ 5], The temperature equation was studied in [6] in connec=
tion with the case involving solution of the dynamic system of equations relative
to the problem of extending the boundary layer [1 ~ 57,

1, Ceonsider the system of equations of the thermal boundary layer for the forced=
convective flow of an incompressible fluid (see [7])

Vityy — Uty — vuy = — Uls, Uy 2oy =0 (1.1)
aTyy — uly — 0Ty = [ (2, y) = — v/c (uy)? (1.2)

Here v, @ and ¢ are known positive constants and U7 (z) is the specified longitudinal
velocity component of the outer flow, Initially we determine the functions u (», y) and
v (=, ¥) from the dynamic equations (1,1) and the boundary conditions corresponding to
them; we then use the result to determine the temperature 7 (=, ¥) in the boundary
layer from Egs, (1,2) and the associated boundary conditions, which we give below,

Let u (», y) and v (x, ¥) be the solution in the domain Q {0 < = << X, 0 < y < oo}
of Egs, (1,1) with the following boundary conditions:

HI 0 0, u ix:() =0,v I_r;:() = vq (x), im u (z, y) = U {x) (1. 3)

HroQ
Here v, (x) and U (x) are specified smooth functions, U/ (0) =0, U () >0 for = >0
and U’ (0) > 0.

Uniqueness and existence theorems were established for the solution of the problem
(1,1),(1,3) in [3, 4], We shall not give these theorems here but merely note those pro-
perties of the functions u and » which are used to study Eq, (1,2) in the strip Q; for
brevity we call them the Conditions A: in any arbitrary compactum lying in the strip
Q the functions u {%, y), » (=, y) and wuy {(x,y) satisfy Holder condition; u (z, y) >0
for z, y >0; u(r, 0) =0, u(0, ¥ =0; u(x,y) < U (x) everywhere in Q, where the
function U (x) is continuous for z > 0 and x

=i

e :—}—w (104)

the function @ (z, y). is bounded for bounded ¥, and uy, (z,y) — 0 for y — oo, It is
evident that Eq, (1,2) in the domain @ is a parabolic equation which is degenrate for
Z =0 and y = 0.

Before formulating a properly=-posed boundary~value problem in Q for Eq. (1,2), we
make the following notes,

Note 1, It is known (see, for example, [8, 9]) that owing to the conditions (1, 3)
and (1, 4) no boundary condition can be specified for 7 (z, y) at z = 0, We show that
a bounded solution of an equation of the form (1, 2) with the boundary condition

Ty = To () (1.5)

where T, (x) is a specified continvous functionon 0 < << X, may prove to be non=
unique, In fact, the function ¥ o
T (y) == Sexp {T t2} dt
0
which is bounded and nonzero in the strip Q , satisfies Eq, (1,2) for e =1, u=2oF, v = oy,

f=0 (k> 1,a = const < 0) and also the homogeneous boundary condition T [—p=0-1It
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follows from this that for the conditions considered the solution of the problem (1,2),
(1. 5) is not unique, Thus, in addition to the condition (1, 5), yet another condition must
be given, In boundary layer theory a condition which serves the puropse is lim 7 (x, y)=
T, where T_ is a specified constant, e

Theorem , Suppose that the coefficients and the right side of Eq, (1,2) satisfy the
Conditions A and, in addition, that

te

\ e \swarfarcce, B = max v e (1.6)

o o Osovs X

[z, )| < g (y) 1.7

where the positive function g (y) — 0 for ¥ — oo in such a way that

4o *

S g (1) exp {—58(9) ds} dtv < oo (1.98)
0 0
Then in Q Eq, (1,2) has a unique bounded solution satisfying the conditions
Ty = Tw (@), Hm T (e, 9) =T, (1.9
>

where Ty, (x) is a specified continuous function (temperature of the wall of the body
over which the flow takes place), 7' (¥) is bounded, and T is a specified constant
(temperature of the outer flow),

2, For proving the theorem we find it convenient to make a change in the indepen-

dent variables, namely, 1
r=ux, n:1_1+—y (2,1)

for which the strip Q goes over into the rectangle D {0 <z < X, 0 < n < 1}, and
Eq, (1.2), wherein with no loss in generality, we can assume a = 1 and replace it by the
following equation in the domain D:
L= —mtTy, —ule,MTx+b@ I, =7 n (2.2)
br, M=—(1—m220 —m)+ 2 )]
The conditions (1, 9) become the boundary conditions

T g = Tw (@), T, =T (2.3)

~

We prove the existence of a solution of the problem (2, 2), (2. 3). For this purpose we
consider Eq, (2,2) in the rectangle

Dg{d<<r<{X, dn<tl—=28), 081,
with the following conditions on the boundary of Dy:
Tles=Tuw@, Tlos=Tw Tls=7"" @ (2.4)
where the function T,® (1) is chosen to satisfy the conditions

TP@)=Ty (@) for <Yy TS =T, for 1.
[T | <max{|T [, max | Ty (@) |} =M
oc 0

<xg X
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A solution 7° (z, n) of the problem (2, 2), (2.4) exists, and by the maximum principle

for nondegenerate parabolic equations (see, for example, [10])
| 7% (@) | < M (2. 5)

where M does not depend on 8. By virtue of Schauder-type estimates [10], there exist
in an arbitrary fixed rectangle D, , estimates for the H8lder norms of the solution r®
and its derivatives 7°, 75 , T2 which are uniform with respect to 6,

Based on these estlmates. we use the diagonal process to select a subsequence r’m
(m =1, 2, 3, ...) which, together with the derivatives appearing in Eq, (2, 2), converges
for m — oo (8 — 0 for m — o) in every closed domain lying strictly inside D. Let-
ting m— oo in the equation for 7' m we find that the limit function T (x, 1) satisfies
Eq, (2 2) in the rectangle D.

To prove that the condition T (z, 0) = Ty, () is satisfied we estimate the difference

®(e,m) — Ty (2) = 8% (2, 1) for small v. The equation

L (SS) =f () w(x,mn) Ty’ (x)

which is satisfied by the function S° (z, n), is now considered in the domain Dy’ {0 <
r S X, <l << Vah Let [ fiz,m) | < My, and u(z,m) | T, (x) | < M, in the domain
Dy’ We introduce the auxiliary function Y () = K (1 — ¢"¥").We choose the constant
A > from the condition & (1 —m)* > | & (x, m) | + 1. This is possible since the coef«
ficient ¢ («, y) is bounded for bounded y, or, in accord with the substitution (2, 1), for

<< 1y < 1. We choose the constant K > ( so that

20 Mit Ma)
t—e V3 N
where M is the quantity appearing in the inequality (2, 5), Computing L (Y), by virtue
of the choice of &, we have

L(Y)= — EN"" (N (1 —m)f — b (2, m)) < — KN <0

Consider the function Y =+ §° (z, 1). By virtue of inequality (2. 6), we have in Dy’

R > max { (2.6)

L 28 < — KN +f@m) +ulzn To () <—ENY 4 M, + M, <0

From the relations (2, 4) — (2, 6) it follows that the function Y =+ $° > 0 on the bound=
ary of the domain D3’ lying on the lines » == 6, = 8, } = 1/,. From this it follows
by the maximum principle that Y =+ §° > 0 everywhere in Dy’ Hence we have the esti-
mate | S® (z,m) | < Y (v) which is uniform with respect to 0 and z. Then, letting
6~ 0 and n — 0, we obtain T (x, 0) = Ty ().

We now prove that T (z,m) also satisfies the second of the conditions (2,3), To do
this, we estimate /% (z, ) = 18 (r.w) — r_ for small 1 — n. We consider the equation
L (#® = { (z, m), which the function /® (x, n) satisfies, in the domain DS {d << X,
2/, < m < 1 — 8}, Consider the function

1
Zm) =K, {G(1)Gy(1)dt 2.7
kil

where

!
1 [y _B(r)dt g1 dr
CO= T “p{ u—w}’ o=t +\1Esear
0 0

the functions f (r) and g (r) being the same as in the statement of the theorem, The
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integral (2, 7) exists by virtue of the inequalities (1, 6) and (1, 8) and defines a positive
function for n << 1. We choose the constant A, >> 1 from the condition Z (¥/s) > 24!
where A f{s the constant of inequality (2, 5), We have

L(Z)y=—KG Ul —m?*6& M)+ &Gl — K, gn) (2.8)
Since »
: d
(1—=nPG" () -+ bz, M) G (M) = exp {5 ——-?1(1_) T:-: } B —v ] 20
L]

from the definition of the function § (v), we obtain from Eq, (2. 8)

L(Z) < — Kigm
It is easy to see that the function Z (n) + F° (z, 1) > 0 on the boundary of Dy lying
on the lines = 8, n = %/, 1 = 1 — §. By virtue of the choice of K, > 1 ,inside Dy’
wehave L(Z £ F) << — K g () = f (e, M) < — K¢ () + g () <0, From this
we find by the maximum principle that Z =+ F® >> 0 everywhere in the domain Dy,
or, | F3 (z, N | << Z () in this domain, Letting § — 0 in the last inequality, we obtain
that 7 (2, m) — T, for m — 1, uniformly with respect to z, QED,

It is obvious that if f == 0 in Eq, (1, 2) (which is the situation when heat generated by
friction is neglected), the condition (1, 7) is eliminated and for the function Z (1)) we
can take )

K1 S G () dt
n

We proceed now to prove the uniqueness of the solution of the problem (2, 2), (2, 3),

Suppose that two solutions of the problem exist and consider their difference
T (@), n) =Ty (z,m) — T, {z, 1)

For an arbitrary ¢ >0 we can find a & (¢) such that for n = 1 — 3 (¢) we have
| T(x,m) | <e. The function v == T (z, n) — ¢ satisfies the equation L (V) = 0, more~
over, V<0 for n = 0 and 1 =1 — § (¢). We show that V < 0 everywhere in the rec-
tangle D {0 <2 << X, 0 < n< 1 — 3§ ()} Inthe equation 1. (V) = 0 we make the

substitution i
Vi, =HM R (&), I m > 0

then for the function R (x, n) in D, we obtain the equation

L(R)y=( —n0 R, — uly+BR -+ CR=0 (2. 9)
2(1 — Y b1 (1 — 4 H" 4 b1l
B m = 7] o Gl = 7]

We select the function # () > 0 so that in Eq, (2, 9) we shall have C (v, 1) oo =
const < (. Consider the function .
todt
mngum
X
where U7 (¢) is the function that appears in relation (1,4), We have

wf{z, )
L(®) = C (a, T])‘D(l)*%-mﬁcc;@(r)—!—i-

Since ¢y << 0 and @ (z)— o for « — 0, we can find an 2, such that for all = < x» we
have [, () <C 0. Then for arbitrary y > ( we obtain
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LEP (z) — R (z,m) <0, for z<

For fixed ¥ we can find z, (y) > 0 such that y®@ (z,) — R (z;, ) >0 for 0 <y <1 —
d (¢). In addition we also have y® (xr) — R (x, ) > 0 for n =0 and for n =1 — 8 (¢)
since R (z, 0) < 0 and R (z, 1 — 0 (g)) < 0. Hence, it follows from the maximum prin-
ciple that y® (z) — R (v, ) > 0 everywhere in rectangle {r, <z 2, 0 < <1 —

0 (e)}. Since v is arbitrary, it follows from the inequality R (x, n) << yD (a) just proved,
that B < 0 in the rectangle {0 <C = <C 2, 0 < << 1 — 8 (g)}. But then by the maxi-
mum principle this is also true in the rectangle {z, <z << X, 0 << <1 — 6 (8)},
since there L (R) = ( also and

Rlxzxg<09 Rin:0<07 R‘ﬂ=1,5(5)<0

Thus we have proved that B 0 everywhere in D,. From this it then follows that
T(z,m) <e in D.. By virtue of the symmetry of 7, and T, we have | T (z, n) | < &
in D,. Letting ¢ -~ 0 ,we obtain 7'; = 7,. This completes the proof of the theorem,

Note 2, We have shown above that the solution of the problem (1, 1), (1, 3), constructed
in [3, 4], satisfies the Conditions 4 of the theorem, However, in the theorem, besides
the Conditions A, we need also to satisfy the conditions (1, 6), (1, 7). Proceeding from
the results presented in [3], we can show that the solution u (z, ¥, and v (z, y) of the
problem (1, 1), (1. 3) also satisfies the conditions (1, 6) and (1, 7),

Note 3, In the formulation of the problem (1, 2), (1. 9) we assumed that 7_= const,
We show now that we cannot specify a nonconstant value at infinity for the solution
T (z, y) of Eq, (1,2) which is bounded in the strip Q.

Let us assume that the solution 7 (x,y) of the problem is such that limy—e 7 (z,4) =
T (x). By Egs, (2.1) this is equivalent to the condition 7 (z,n),_, = T (z). For an
arbitrary & > 0 we can find a2 § (¢) such that | T (x,1 —8) — T_ (x) | < &. Let usset
7% (@, M) — T (®) = F®(z, 7). Equation (2,2), which the function F® (z, 1)) satisfies,
is now considered in the domain D" {6 < z < X, %3 <{n <1 — 8 (¢)}. Further, con~-
sidering the function Z (n) -+ & * F® (x,n), where Z (n) is defined by Eq, (2,7), and
repeating word for word all the steps followed in proving that the second of the conditions
(1. 9) is satisfied, we obtain the following estimate in the domain Dy’ ;

| P @) <e+ 2 m)
uniformly in & and z. From this, letting 8 — 0 and noting that Z () —» 0 for n — 1,
we have | T (x, 1), — T (0) | < e. Since ¢ is arbitrary, we obtain 7 (z, 1) = 7 (0),
ie, T (2) = T, (0) = const, QED,
8, For the study of the system (1, 1), (1.2) we can use the Crocco transformation:
E=x,m = u(z,y)/U (). Then the domain Q goes over into a domain D. and instead

of the dynamic system of Egs, (1, 1), we obtain in D the following equation for W =
WOOT w0 ® W, (R — 1) UgW, — nUgW = 0 (3.1)
The conditions (1, 3) transform into the following conditions for W:

| 4mo = 0 (3.2)

The Crocco transformation changes the temperature equation (1, 2) into an equation
of the form

Wi, =0, (WW,—z () W+ Up
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aW?T,, — U () Iy — (v —a) WW, + U (1 — o)) T, = (3.3)
— VO (E) W (L, )

Equation (3, 3) possesses the same singularities in the domain ) as does Eq, (1,2) in the
domain (Q; it degenerates for 1 = 1, m = 0 and g = 0, i,e, on the whole fundamen=-
tal boundary of the domain D.

Existence and uniqueness theorems for the solution W of the problem (3,1), (3, 2)
were proved in [3], A study of Eq, (3, 3) on the basis of the properties of the solution
W of the problem (3, 1), (3,2) leads to the same results as those above by virtue of the
invertibility (proved in [3]) of the Crocco transforamation,

We note, in conclusion, that if the integral (1, 6), in which

B () = min_c (e 1)
0 xel X

diverges, and the coefficients and the right side of Eq, (1, 2) satisfy the Conditions 4 as
before, then the Eq, (1, 2) has a unique bounded solution in () , satisfying only the con=
dition (1, 5),

The author thanks O, A, Oleinik for a discussion of the results,
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